GEOLOGY

The geological sciences play a key role in addressing environmental problems, recognizing and mitigating natural hazards, and procuring natural resources. Furthermore, geoscientists make important contributions to human knowledge in fields as diverse as environmental geology, sustainability, oceanography, planetology, geochemistry, geophysics, plate tectonics and paleontology.

ABOUT THE PROGRAM

Student-faculty research comprises an important part of the geology program at Hope College. In recent years students and faculty have been engaged in research projects such as:

• Experimental investigations on the remediation of contaminated ground water
• Analyzing trace element chemistry of phosphate minerals
• Working out the geological history of coastal dunes along Lake Michigan
• Making 3D computer models and gigapixel panoramas from digital photos to study dune erosion
• Exploring the effectiveness of biochar as a means to improve poor quality soils
• Investigating antibiotics and hormones in local ground water and surface water
• Uncovering the development of early continental crust in India and Sweden
• Documenting the occurrence and abundance of insects in ground water

Traditionally, the training of geologists has included a large amount of field experience. Hope College is ideally situated to study glacial geology, sedimentology, geomorphology, limnology and environmental issues. To broaden the spectrum of field experience, students commonly take longer trips to examine the geology of other areas such as the Upper Peninsula of Michigan, the Smoky Mountains of Tennessee, and the Ohio River Valley in Indiana and Kentucky. In addition to these trips, each year the regional geology field trip gives students the opportunity to visit and investigate the geology of a North American region. In the past, regional field trips have gone to the Colorado Plateau; Big Bend, Texas; Death Valley, California; Southern Arizona; New Mexico; and the Bahamas.

We are well-equipped for teaching and research. In addition to petrographic microscopes, the department has a geographic information system (GIS) computer laboratory, X-ray diffractometer, thin section preparation laboratory, ion chromatograph, gas chromatograph, infrared Fourier transform spectrometer, UV-visible light spectrometer and access to a scanning electron microscope.
The study of the Earth is eclectic so geologists must be competent in the other natural sciences and in mathematics. Accordingly, we encourage strong minors in other sciences and composite majors with chemistry and physics.

The Department of Geological and Environmental Sciences has an established reputation of excellence. Many graduating seniors have gone directly to work in environmental consulting firms, mineral resource companies, or the energy industry, while others have been accepted at some of the most prestigious graduate programs in the country, including the California Institute of Technology, University of Chicago, Harvard, Stanford, Princeton and various Big Ten universities.

MAJORS

Bachelor of Arts Degree in Geology

The Bachelor of Arts in Geology consists of one of the following sequences of introductory courses:

Introductory Sequence #1 GES 100 – The Planet Earth, 4 credits and GES 111 – How The Earth Works, 2 credits or

Introductory Sequence #2 GES 125 - Geology in the Field, 4 credits and GES 111 - How the Earth Works, 2 credits

together with the following courses:

- GES 203 – Historical Geology, 4 credits
- 16 total credits of geology courses selected from GES 225, GES 243, GES 244, GES 251, GES 252, GES 320, GES 351, GES 430, GES 450, GES 453 or GES 295
- GES 341 – Regional Field Study, 2 credits
- One year, 8 credits, of ancillary science – Biology, Chemistry, Engineering, Environmental Science, or Physics

Bachelor of Science Degree In Geology

The Bachelor of Science in Geology consists of one of the following sequences of introductory courses:

Introductory Sequence #1 GES 100 – The Planet Earth, 4 credits and GES 111 – How The Earth Works, 2 credits or

Introductory Sequence #2 GES 125 – Geology in the Field, 4 credits and GES 111 – How The Earth Works, 2 credits

together with the following courses:
- GES 203 – Historical Geology, 4 credits
- 24 total credits of geology courses selected from GES 225, GES 243, GES 244, GES 251, GES 252, GES 320, GES 351, GES 430, GES 450, GES 453 or GES 295
- Two semesters of GES 341 – Regional Field Study, 2 credits apiece for a total of 4 credits
- Two years, 16 credits, of ancillary sciences – biology, chemistry, engineering, environmental science, or physics and one year, 8 credits of mathematics (Calculus preferred). Both years of ancillary science need not be in the same science. Students should choose these courses in consultation with their departmental advisors.
- Students receiving a Bachelor of Science degree are also required to work on an independent research project with a faculty mentor.

Geology Chemistry Composite

The composite major is an alternative to the departmental major. While the composite major seeks to fulfill the same objectives as the departmental major, namely, the ability to engage in intensive, in-depth scholarly inquiry, the composite major allows for special alignment of courses from several departments to fulfill a particular academic or vocational objective. The composite major is just as rigorous as a department major, but it allows the tailoring of an academic program to a field or topic of inquiry other than a departmental field. For additional information, please refer to the Degree section of the catalog.

Geology Education

In partnership with the Department of Education, the Department of Geological and Environmental Sciences offers a Geology/Earth Science teaching major through the State of Michigan. The Michigan Certification Code requires that prospective high school teachers complete 30 or more credits of courses in geology for a major. Consult with the Department of Education concerning detailed requirements.

Geology-Physics Composite

This was the first composite major established in the sciences at Hope College. Both the geology-chemistry and geology-physics majors have been very successful. Students who graduate with the composite major are in great demand and have been accepted into top graduate schools in the United States. You will find additional information about composites here.

MINORS

Environmental Science

The Department of Geological and Environmental Science administers the environmental science minor, which is described in detail here.
Geology

A geology minor consists of at least 16 credits, not more than half of which may be numbered 203 or below.

Geology Education

In partnership with the Department of Education, the Department of Geological and Environmental Sciences offers a geology/Earth science teaching minor through the State of Michigan. The Michigan Certification Code requires that prospective high school teachers complete 22 credits in geology for a minor. Consult with the Department of Education concerning detailed requirements.
COURSES

GEOLOGICAL/ENVIRONMENT SCIENCE

GES 125 - Michigan Field Geology
This course is designed as a hands-on introduction to the broad scope of geology using phenomena found within the state of Michigan. Its goal is to give students direct experience with the ways geoscientists ask and answer questions about the Earth. The class begins with a 10-day field trip during which students will travel, camp, and observe and interpret a variety of sedimentary, igneous, and metamorphic rocks and processes that affect them. The course finishes work at Hope College to further understand processes encountered in the field. This course is one possible introduction to the geology major. A 10-day August field trip is required. A student may not receive credit for both GES 100/GEMS 157 and GES 125.

Credits Awarded: 4
Terms Offered: Fall
Attributes: ADDITIONAL COURSE FEE (+FEE), Natural Science I with lab (NSL)

GES 493 - Independent Study: Geol/Enviro
Course provides opportunity for a junior or senior to engage in an independent study project in an area in which the student has special interest.

Credits Awarded: 1-4
Terms Offered: As Needed
Prerequisites: Permission of Instructor

ENVIRONMENTAL SCIENCE COURSES

GES 211 - Earth Environmental Systems I
This is the scientific study of our planet in terms of natural systems and their mutual interaction, with an emphasis on the modification of these systems by human activities. The emphasis in this course is on local-scale environmental problems. Subjects covered include air pollution modeling, fate and transport of water pollution, contaminant toxicology, risk assessment, soil chemistry, and soil degradation. Three hours of lecture per week.

Credits Awarded: 3
Terms Offered: Fall
Prerequisites: Chem 125 or Chem 131

GES 212 - Earth Environmental Systems II
This is the scientific study of our planet with an emphasis on global environmental problems. Subjects covered include population and demographics, basic ecological principles, biological diversity, extinction, natural resources, sustainability, biogeochemical cycles, climate and climate change, and ozone depletion. Three hours of lecture per week.

Credits Awarded: 3
Terms Offered: Spring
Prerequisites: Chem 125 or Chem 131
GES 220 - Laboratory Methods in Environmental Science
This laboratory course accompanies GES 211 and GES 212. This class will introduce laboratory and field methods necessary to investigate the natural systems which comprise our ecosystem, and the effects of human activities on it. Sampling techniques, field identification, and common methods of chemical analysis for environmental study will be emphasized. Three hours of laboratory per week and one hour of discussion.
Credits Awarded: 2
Terms Offered: Spring
Prerequisites: Chem 127 or Chem 132

GES 310 - Environmental Public Policy
This course is an introductory analysis of the economic, scientific and political factors involved in environmental public policy. American environmental management will be viewed in terms of the interplay among economic efficiency, scientific feasibility and the demands of the political process. Topics covered will include federal lands, intergovernmental relations, agency law, comparative institutions, U.S. environmental regulations and technological compliance. This course is team taught by faculty from the Departments of Economics and Business, Geological and Environmental Sciences, and Political Science, so that students are exposed to the interdisciplinary nature of environmental public policy issues. Four hours of lecture per week. Fulfillment of the NSL general education requirement is highly recommended prior to this course.
Credits Awarded: 4
Terms Offered: Fall
Prerequisites: Econ 211 with a grade of C- or better or Pol 100

GES 401 - Advanced Environmental Seminar
This is an interdisciplinary course where students with different academic majors will work in teams to research a local environmental problem. The students will work with faculty members in geological/environmental sciences, biology, chemistry, and possibly other departments in the design of a research project, the collection and interpretation of data, and the making of recommendations. This course is meant to duplicate the process by which scientists work to solve actual environmental problems and is intended as a "capstone" experience for environmental science minors. One two-hour group meeting per week. Additional times to be arranged for consultation, field and laboratory work.
Credits Awarded: 2
Terms Offered: Fall
Prerequisites: GES 211 or GES 212 or GES 220
GEOLOGY COURSES

GES 100 - The Planet Earth
This course is an introduction to the scientific study of the planet on which we live. This course emphasizes the study of the major Earth systems (atmosphere, hydrosphere, biosphere, and geosphere) and the interactions between them. Attention is given to environmental change and its implications for our future. This course is one possible introduction to the geology major. Three lectures and one three-hour laboratory each week. One or two Saturday morning field trips are required. Cross-listed as GEMS 157. A student may not receive credit for both GEMS 157/GES 100 and GES 110.

Credits Awarded: 4
Terms Offered: Fall, Spring
Attribute: Natural Science I with lab (NSL)

GES 104 - Organisms and Environments
This is the second of a two-semester sequence of courses. The combined courses ("Matter and Energy" and "Organisms and Environments") will satisfy the natural science laboratory general education requirements only for elementary education teacher candidates. The courses will also cover the content that is important for future educators in an integrated inquiry-based format. The content in this recommended course sequence will flow from physical science to Earth/space science to life science topics that students will find themselves teaching in the future. This course will primarily include content from the life and Earth/space sciences, though due to the interdisciplinary nature of many of the topics, physical science topics will also be addressed where appropriate.

Credits Awarded: 4
Terms Offered: Fall, Spring
Attribute: Natural Science I with lab (NSL)

GES 111 - How The Earth Works: An Introduction to Plate Tectonics
Plate tectonics is a theory that has revolutionized geology, giving the science its first coherent, widely accepted picture of how the whole Earth works. This course is designed to give students a solid understanding of the basic theory, the evidence on which it is based, and its application to subjects as diverse as earthquakes, volcanoes, mountain ranges, precious metal deposits, the topography of the sea floor, and the history of life.

Credits Awarded: 2
Terms Offered: Fall

GES 203 - Historical Geology
This is an introduction to the physical and biological development of the Earth during the last 4.5 billion years. Topics include the formation of the Earth, interpretation of major events in Earth history as preserved in the rock record, and the origin and evolution of life. Three lectures and one three-hour laboratory each week. One weekend field trip is required.

Credits Awarded: 4
Terms Offered: Spring
Prerequisites: GES 100 or GEMS 157 or GES 111
GES 225 - Introduction to Geographic Information Systems
This course introduces principles and tools for using a Geographic Information System to display and analyze location-based data, along with instruction on where to find freely available data and how to create new datasets. Concepts will include scale, map projections, raster- and vector-based representations of data, and evaluation of spatial relationships between features. Students will receive hands-on instruction with ArcGIS software to learn how to create and analyze maps of any kind of data with a geographic component. Exercises will focus on analysis of real-world datasets to solve problems of local interest.

Credits Awarded: 2
Terms Offered: Spring

GES 243 - Mineralogy: Earth Materials I
This course is an introduction to the paragenesis and crystal chemistry of minerals with emphasis on the rock-forming silicates. Laboratory periods will be devoted to the study of minerals in hand samples, as well as exercises designed to help the student understand physical and chemical properties of minerals. Three lectures and one three-hour laboratory per week. One weekend field trip will be required. Students may take Chem 125 or Chem 131 prior to enrollment in or concurrently with the course.

Credits Awarded: 4
Terms Offered: Fall, Even Years
Prerequisites: Chem 125 or Chem 131
Corequisites: Chem 125 or Chem 131

GES 244 - Petrology: Earth Materials II
This is a course about mineralogical, chemical, and textural characteristics of igneous, sedimentary, and metamorphic rocks. Their occurrence and petrogenesis will be discussed in terms of rock associations and relevant physical and chemical processes of formation. Laboratory sessions will be devoted to petrographic description, identification, and interpretation of rocks in hand samples and microscope thin sections. A Saturday field trip is required. Three one-hour lectures and one three-hour laboratory per week.

Credits Awarded: 4
Terms Offered: Spring, Odd Years
Prerequisites: GES 243

GES 251 - Surficial Geology: Earth Structures I
This is an introduction to the natural processes shaping Earth's surface. Among other topics, the course will stress weathering, landform and soil development, soil mechanics, the influence of running water, moving ice and wind on Earth's surface, and people's interaction with surficial geology. The laboratory will emphasize the use of maps and other geographic images and the course will include an introduction to mapping. Three lectures and one three-hour laboratory each week. Two Saturday field trips will be required.

Credits Awarded: 4
Terms Offered: Fall
GES 252 - Structural Geology: Earth Structures II
This is a study of the structures formed by rock deformation, stressing geometric techniques and the concept of strain. The laboratory will emphasize the preparation and interpretation of geological maps and cross-sections. Three hours of lecture and one three-hour laboratory each week. One weekend field trip is required.
Credits Awarded: 4
Terms Offered: Spring, Even Years
Prerequisites: Ges 251

GES 295 - Special Topics in Geology
A course offered in response to student and instructor interest. Topics are not generally covered in the regular course listings. Course may be taken multiple times if topics are different.
Credits Awarded: 0-4
Terms Offered: As Needed
Prerequisites: Permission of instructor

GES 320 - Introduction to Petroleum Geology
This course is an introduction to the applied sub-discipline of geology called petroleum geology. Emphasis is placed on the techniques and strategies used in the modern energy industry to find, extract and produce petroleum hydrocarbons. Topics will include depositional environments, subsurface mapping, seismic interpretation, wire-line logging, reservoir characterization, onshore and offshore leasing, and exploration economics. Student will gain experience working individually and on teams in the evaluation of subsurface data and the development of exploration-related strategies.
Credits Awarded: 4
Terms Offered: Spring, alternate years
Prerequisites: GES 100 or GEMS 157 or Engs 100

GES 341 - Regional Field Study
This course is a field investigation of the general geology of an area selected by the instructor. One or more hours of lecture will be held each week prior to study in the field. The entire spring vacation or an extended period in the spring or summer will be spent in the field. Courses may be repeated for credit if fieldwork is conducted in different regions.
Credits Awarded: 2
Terms Offered: Spring
Prerequisites: GES 100 or GEMS 157 or GES 110 or GES 111

GES 351 - Invertebrate Paleontology
This is the study of the fossil record of the history of invertebrate life. Topics include changes in diversity during the Phanerozoic, tempo and mode of evolution, functional morphology, systematics, and paleoecology of the major invertebrate phyla. Three hours of lectures and one three-hour laboratory per week. One or more weekend field trips will be required.
Credits Awarded: 4
Terms Offered: Fall, Even Years
Prerequisites: GES 203

GES 430 - Environmental Geochemistry
The principles of physical and inorganic chemistry will be applied to geochemical systems of environmental interest. Element recycling and evaluation of anthropogenic perturbations of geochemical cycles will be examined with a strong emphasis on aqueous chemistry. Laboratory exercises will emphasize computer modeling and the analyses of natural waters by a variety of techniques. Three lectures each week. This is a flagged course for the environmental science minor.
Credits Awarded: 4
Terms Offered: Spring, Odd Years
Prerequisites: Chem 331 or GES 243
GES 450 - Hydrogeology
This is a study of the geological aspects of the water cycle with an emphasis on groundwater. Topics include aquifer testing, groundwater flow, geology of aquifers, water resource management, groundwater chemistry, contamination, and remediation. Emphasis is placed on quantitative problem solving. Three hours of lecture and one three-hour laboratory each week. This is a flagged course for the environmental science minor.
Credits Awarded: 4
Terms Offered: Spring, Even Years
Prerequisites: Permission of instructor

GES 453 - Sedimentology
This is the study of the mineralogy, petrology, occurrence, and stratigraphic associations of sedimentary rocks. Thin section examination, textural analysis, and field investigation of sedimentary rocks and unconsolidated sediments will be performed in the laboratory. Three hours of lecture and one three-hour laboratory each week. One or more weekend field trips will be required.
Credits Awarded: 4
Terms Offered: Fall, Odd Years
Prerequisites: GES 203

GES 490 - Special Problems
This course is designed to introduce the student to research. A research problem in an area of special interest will be nominated by the student, and approved by a faculty member who will oversee the research.
Credits Awarded: 0-3
Terms Offered: Fall, Spring, Summer
Prerequisites: Permission of instructor

GES 495 - Study in Geology
In this course a professor guides students in scholarly readings and discussions focused on a special area of geologic interest.
Credits Awarded: 1-2
Terms Offered: Fall, Spring, Summer

FACULTY & STAFF

Bodenbender, Dr. Brian
Professor of Geology & Environmental Science (1996)
Ph.D., University of Michigan, 1994
M.S., University of Michigan, 1990
B.A., College of Wooster, 1987

DeVries-Zimmerman, Suzanne
Adjunct Assistant Professor of Geological & Environmental Science (1999)
M.A., Princeton University, 1989
B.A., Hope College, 1986
B.S., Hope College, 1982

Hansen, Dr. Edward
Professor of Geology & Environmental Science and Department Chair (1984)
Ph.D., University of Chicago, 1983
B.S., University of Cincinnati, 1978

Peterson, Dr. Jonathan
The Lavern '39 and Betty DePree '41 Van Kley Professor of Geology & Env Science (1994)
Ph.D., University of Chicago, 1989
B.A., Hope College, 1984

VanderMeer, Sarah
Lecturer/Geology (2007)

VanDyken, Matthew
Lecturer in Geological and Environmental Science (2012)