/ Neuroscience


Our program strongly promotes discovery and inquiry-based learning through our research projects in courses and in faculty research labs.

Neuroscience may be an undergraduate minor, but you will learn to research like a graduate student. All three core classes in the neuroscience program incorporate research and lab work. In addition, many of the flagged courses offered through our sister departments as part of the program emphasize research related to biology, chemistry, engineering, mathematics, nursing, philosophy and psychology.

In the capstone course, students are expected to develop their own research hypotheses, write a scientific research proposal, complete the experiments and report their results both orally and in writing. You’ll work on a semester-long project focused on identifying risk factors for the development of mood disorders. Students present these research projects at the annual Celebration of Undergraduate Research and Creative Performance at Hope College, national scientific conferences like the Society for Neuroscience Annual Meeting and regional meetings such as the Midwestern Psychology Association annual meeting. Portions of these papers have also been submitted for publication with students as co-authors.

Student/Faculty Collaborative Research Opportunities

All of our faculty are actively pursuing research in their fields and much of it is directly related to neuroscience. Topics include:

Affective Neuroscience

Dr. Root Luna
Cognitive science research chartDr. Root Luna and her students explore the connections among emotion, virtues (like forgiveness, gratitude, hope and humility), mental health and physiology. Specifically, Dr. Root Luna's work centers on the peripheral nervous system, examining facial muscles, sweat, respiration, heart rate, blood pressure and heart rate variability (a measure of parasympathetic nervous system engagement). In the lab, participants are often asked to engage in imagery paradigms, cognitive tasks or writing while their physiology is monitored. Overall, this work is designed to bring clarity to the question of how our emotions and character influence both our mental health and physiological functioning.

Also see research by Dr. Griffin in cellular/molecular neuroscience below.

Systems/Behavorial Neuroscience

Cellular/Molecular Neuroscience

Dr. Griffin

Cellular and molecular neuroscience illustrationDr. Griffin and his students investigate how microbes interact with the nervous system. In particular, they are looking at the mechanisms by which neuropeptides affect the viability and replication of bacteria and viruses. The Griffin lab is also researching how microbial infections may cause cognitive dysfunction.

Dr. Chase

Cellular and molecular neuroscience illustrationDr. Chase and her students strive to understand the regulation of an important membrane transporter that is highly expressed in astrocytes in the brain. This transporter plays an important role in maintaining the oxidative health of the astrocytes and the synaptic levels of the neurotransmitter glutamate. Dysregulation of the transporter can lead to excessive glutamate release, excitotoxic cell death and/or development of oxidative stress. They have shown that oxidants acutely regulate the transporter’s activity by triggering its rapid redistribution from intracellular compartments to the cell surface. Their goal is to investigate the specific molecular mechanisms which allow for acute regulation of the transporter and identify key proteins which regulate transporter trafficking. As such, their work may provide direction for future studies aimed at pharmacological manipulation of transporter activity for therapeutic benefit.

Also see research by Dr. Chase and Dr. Barney in cellular/molecular neuroscience above.

Applied neuroscience

Dr. Goris
Dr. Goris has established a nurse-led molecular genetics laboratory at Hope College, and her research is focused on the relationship between neuropsychiatric symptoms and genetics in people with Alzheimer's Disease. She is working with students to explore various genes hypothesized to be involved in the biologic pathway underlying apathy, with genetic variation playing a significant role in differential apathy symptoms, in an effort to contribute to decreasing apathy and improving quality of life among individuals with Alzheimer's Disease suffering from neuropsychiatric symptoms.
Dr. Polasek
Applied neuroscience research imageDr. Polasek and her students are working toward designing a non-invasive, home-based therapy for treating phantom limb pain using electrical stimulation. In particular, better methods to activate nerves from the surface of the skin are being developed. Computer models are used to make initial predictions of effective electrode locations that are then tested on people with and without amputated limbs.

If a particular topic interests you, talk to your professor about ways to participate. There are typically opportunities every year for students to collaborate with faculty on original research.